Positive Approximation and Rule Extracting in Incomplete Information Systems

نویسندگان

  • Yuhua Qian
  • Jiye Liang
چکیده

Set approximation is a kernel concept in rough set theory. In this paper, by introducing a notion of granulation order, positive approximation of a target set under a granulation order is defined in an incomplete information system and its some useful properties are investigated. Unlike classical rough set theory, this approximation deals with how to describe the structure of a rough set in incomplete information systems. For a subset of the universe, its approximation accuracy is monotonously increasing with a granulation order becoming longer. This means that a proper family of granulations can be chosen for a target concept approximation according to user requirements. Furthermore, an algorithm based on the positive approximation, called MABPA II, is designed for decision-rule extracting and a practical example is employed to illustrate its mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INCOMPLETE INTERVAL-VALUED HESITANT FUZZY PREFERENCE RELATIONS IN DECISION MAKING

In this article, we propose a method to deal with incomplete interval-valuedhesitant fuzzy preference relations. For this purpose, an additivetransitivity inspired technique for interval-valued hesitant fuzzypreference relations is formulated which assists in estimating missingpreferences. First of all, we introduce a condition for decision makersproviding incomplete information. Decision maker...

متن کامل

Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...

متن کامل

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

Approach to approximate distribution reduct in incomplete ordered decision system

The original rough set model cannot be used to deal with the incomplete information systems. Nevertheless, by relaxing the indiscernibility relation to more general binary relations, many improved rough set models have been successfully applied into the incomplete information systems for knowledge acquisition. This article presents an explorative research focusing on the transition from incompl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007